
1

Attacking PUF’s
Kyung Hwan ‘David’ Lee

NUID: 001627957

Lee.Kyun@Northeastern.edu

Scope
This project will perform a machine learning attack on a simulated PUF. The data used in this project are
generated from a simulated PUF in MATLAB and are provided for this project.

During this document, a detailed description on the execution of a Machine Learning attack on a PUF
will be described using tool provided by MATLAB. More specifically, the Classification Learner Tool will
be used to execute multiple different types of Machine Learning attacks on the same set of data. The
accuracy of the Machine Learning algorithm will be provided in this document.

This document will also compare different Machine Learning algorithms and their effectiveness when
applying them to the simulated PUF data given.

This report will be separated into two major sections: Machine Learning Attack on an Idealized PUF and
Machine Learning Attack on a Fault Injected PUF.

This project was completed for Northeastern University EECE7390 – Computer Hardware Security class
taken in the Spring 2021 semester.

2

Table of Contents

Scope ... 1

Table of Contents .. 2

Terminology .. 3

Software Utilized ... 3

PUF Background .. 3

Machine Learning Attack on an Idealized PUF ... 4

Additive Delay Model .. 4

Execution ... 6

Results ... 6

Machine Learning Attack on a Fault Injected PUF .. 11

Changes in the Additive Delay Model ... 11

Execution ... 12

Results ... 13

Conclusion ... 16

Bibliography .. 17

3

Terminology
In this document, the following abbreviations will be used.

1. PUF – Physically Unclonable Function
2. ML – Machine Learning
3. MUX - Multiplexer

Software Utilized
In this project, the following software is used.

1. MATLAB 2020a Student Edition

MATLAB is utilized to execute the ML algorithms and a license is provided by the university,
Northeastern University.

The simulated PUF data set is provided by Prof. Xiaolin Xu (www.xiaolinxu.com).

PUF Background
A PUF, or Physically Unclonable Function, is a hardware security method where a physical object is given
a challenge input and provides a unique response. This is commonly called a CRP, or Challenge and
Response Pair. PUF’s are used in many applications where security is needed, such as RFID.

PUF’s can provide a unique CRP because of the process variations that incur during the fabrication
process. Because of these process variations, it is too time and resource consuming to replicate a
specific PUF.

The specific implementation of the PUF we will be attacking with a ML algorithm is the Arbiter PUF. The
below figure is a small subsection of the functionality of an Arbiter PUF.

 [1]

An Arbiter PUF functions as a series of multipliers (MUX) in series connected as above. The Challenge
bits function as the input of each MUX stage. This will allow the input signal (held high) to propagate

4

through different paths of the PUF. This continues through each stage of the PUF. At the final stage of
the PUF, a Latch device is used to see which path of diverging initial path is faster. If the upper path is
faster than the lower path, the latch will output a high signal. If the lower path is faster than the upper
path, the latch will output a low signal.

When seen above, it may seem like the signals will propagate through the stages at the same rate.
However, because of process variations during the fabrication of the semiconductor, the upper and
lower path and individual MUX paths will have different propagation delays.

The propagation delay differences may be induced by uneven doping, uneven metal depositions, or
uneven oxide deposition. These factors will affect the voltage switching threshold of the gates used
within the MUX and may minutely change propagation delays through the MUX’s. These fabrication
variances can also be seen in the interconnects used to implement the Arbiter PUF. Variances in the
Interconnects will change parasitic wire resistance and capacitance values that will affect the
propagation delay through different paths.

Ideally, the Arbiter PUF will be laid out in a way that each path of the Arbiter PUF is identical to the
other as to not induce any artificial propagation delays due to design. We only want to take advantage
of variances due to fabrication variances to ensure that there is no CRP skew.

Machine Learning Attack on an Idealized PUF
Additive Delay Model
Because of the design methodology of the Arbiter PUF, it is nearly impossible (time and resource
constraining) to physically duplicate an Arbiter PUF. However, it is very susceptible to a Machine
Learning attack.

We can implement the Additive Delay Model to create a Machine Learning attack that has greater than
99% accuracy. This is accomplished because of the design methodology of the Arbiter PUF. We can
calculate and simulate the path delays of the Arbiter PUF using a Machine Learning attack.

 [2]

We can denote the path delays that the signal can travel through within the PUF. By providing a small
subset of the known CRP’s we can utilize a machine learning algorithm to calculate the respective path
delays.

5

 [2]

In this delay model, we must first change the known challenge bits from (0, 1) to (-1, 1). This is done so
that the above equations can be utilized in the Machine Learning attack. A simple explanation for this
change is as follows. For the above equations to function, the challenge bits must modulate which path
delay must be added to the ‘simulated’ signal propagation. If the signal travels through one input of the
MUX, it must not add the other MUX input’s propagation delay. The -1 and 1 challenge bit acts as a
mathematical ‘switch’, enabling or disabling parts of the equation seen above.

The above equations can be used to derive:

 [2]

Where p is defined as the parity of the challenge bits.

 [2]

The parity vector denotes that later stages of the Arbiter PUF will not effect the previous stages of the
Arbiter PUF.

From this, we can denote:

 [2]

6

Please read Extracting Secret Keys from Integrated Circuits by Daihyum Lim. The thesis is provided in the
bibliography of this project report.

From this we can provide the machine learning algorithm with the parity vector of challenge bits with its
known response pair and train a ML algorithm. The ML algorithm will automatically compute the alpha
and beta values in training.

Execution
The following script is used to create the parity vector of challenges while preserving their response pair.

The classification learner is given the 33 wide parity vector of varying sizes to train the ML algorithm.
The classification learner is a tool provided by MATLAB.

Results
The following tabulates the accuracy of the ML algorithm while changing the number of CRP pairs given
as a training data set.

7

CRP No Classification Learner Accuracy Note Time
Tested Against Full Response Vector

Accuracy
100 Fine Tree 81.0% Quick to Train Instant
100 Medium Tree 81.0% Quick to Train Instant
100 Coarse Tree 75.0% Quick to Train Instant
100 Fine KNN 83.0% Quick to Train Instant
100 Medium KNN 60.0% Quick to Train Instant
100 Coarse KNN 52.0% Quick to Train Instant
100 Cosine KNN 70.0% Quick to Train Instant
100 Cubic KNN 60.0% Quick to Train Instant
100 Weighted KNN 78.0% Quick to Train Instant
100 Linear SVM 80.0% Standard Instant
100 Linear SVM 84.0% Optimized x30 < 5 Minutes
100 Linear SVM 85.0% Optimized x100 < 5 Minutes 73.21%
500 Fine Tree 74.6% Quick to Train Instant
500 Medium Tree 75.0% Quick to Train Instant
500 Coarse Tree 70.2% Quick to Train Instant
500 Fine KNN 74.8% Quick to Train Instant
500 Medium KNN 70.4% Quick to Train Instant
500 Coarse KNN 76.8% Quick to Train Instant
500 Cosine KNN 70.6% Quick to Train Instant
500 Cubic KNN 70.6% Quick to Train Instant
500 Weighted KNN 74.4% Quick to Train Instant
500 Linear SVM 87.6% Standard Instant
500 Linear SVM 93.6% Optimized x30 < 5 Minutes
500 Linear SVM 93.6% Optimized x100 < 5 Minutes 90.64%

1000 Fine Tree 71.4% Quick to Train Instant
1000 Medium Tree 71.6% Quick to Train Instant
1000 Coarse Tree 67.7% Quick to Train Instant
1000 Fine KNN 74.4% Quick to Train Instant
1000 Medium KNN 75.6% Quick to Train Instant
1000 Coarse KNN 81.5% Quick to Train Instant
1000 Cosine KNN 75.0% Quick to Train Instant
1000 Cubic KNN 75.5% Quick to Train Instant
1000 Weighted KNN 77.8% Quick to Train Instant
1000 Linear SVM 91.5% Standard Instant
1000 Linear SVM 96.7% Optimized x30 < 5 Minutes 96.90%
2000 Fine Tree 70.0% Quick to Train Instant
2000 Medium Tree 68.7% Quick to Train Instant
2000 Coarse Tree 66.8% Quick to Train Instant
2000 Fine KNN 69.3% Quick to Train Instant
2000 Medium KNN 74.0% Quick to Train Instant
2000 Coarse KNN 83.4% Quick to Train Instant
2000 Cosine KNN 74.4% Quick to Train Instant
2000 Cubic KNN 73.9% Quick to Train Instant
2000 Weighted KNN 75.8% Quick to Train Instant
2000 Linear SVM 95.0% Standard Instant
2000 Linear SVM 98.2% Optimized x30 < 5 Minutes 98.21%
2500 Fine Tree 68.3% Quick to Train Instant
2500 Medium Tree 70.1% Quick to Train Instant
2500 Coarse Tree 66.8% Quick to Train Instant
2500 Fine KNN 67.6% Quick to Train Instant
2500 Medium KNN 75.1% Quick to Train Instant
2500 Coarse KNN 84.5% Quick to Train Instant
2500 Cosine KNN 74.7% Quick to Train Instant
2500 Cubic KNN 75.1% Quick to Train Instant
2500 Weighted KNN 76.4% Quick to Train Instant
2500 Linear SVM 95.8% Standard Instant
2500 Linear SVM 98.3% Optimized x30 < 10 Minutes 98.71%
3000 Fine Tree 71.7% Quick to Train Instant
3000 Medium Tree 71.0% Quick to Train Instant
3000 Coarse Tree 67.0% Quick to Train Instant
3000 Fine KNN 67.6% Quick to Train Instant
3000 Medium KNN 76.1% Quick to Train Instant
3000 Coarse KNN 85.5% Quick to Train Instant
3000 Cosine KNN 75.9% Quick to Train Instant
3000 Cubic KNN 76.1% Quick to Train Instant
3000 Weighted KNN 77.4% Quick to Train Instant
3000 Linear SVM 96.1% Standard Instant
3000 Linear SVM 98.7% Optimized 30x < 10 Minutes 98.80%
5000 Linear SVM 97.5% Standard Instant
5000 Linear SVM 99.4% Optimized 30x < 10 Minutes 99.17%
7500 Linear SVM 98.1% Standard Instant
7500 Linear SVM 99.4% Optimized 30x < 60 Minutes 99.44%

10000 Linear SVM 98.3% Standard Instant
10000 Linear SVM 99.5% Optimized 20x < 90 Minutes 99.61%

Part 1

8

We can see above that even with only 500 CRPs of the available or 0.25% of the available CRPs, we can
achieve a prediction accuracy of 90.64%. We can also see that the Linear Support Vector Machine will
result in the best accuracy in PUF prediction.

With only 5000 CRPs (2.5% of available CRPs), we can achieve 99.17% prediction accuracy. Even the
large training dataset used, the training time for the Linear Support Vector Machine was less than 10
minutes, practically instantaneous.

The optimization graph for 1000 CRPs are shown below.

y = 0.0534ln(x) + 0.5474

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

95 2095 4095 6095 8095 10095 12095

Te
st

ed
 A

cc
ur

ac
y

Number of Training CRPs

ML Accuracy vs Training Data

9

10

 [2]

We can see that the Support Vector Machine is demonstrably the best ML algorithm for modeling the
Arbiter PUF. We rationalized this in a simple way, the Linear Support Vector Machine will compute each
alpha and beta values from the previous section and create a linearly additive relationship with the
following predictors. Simply, the path delays of an Arbiter PUF is additive linearly. So, at a cursory
glance, the Linear Support Vector Machine is particularly suited for this application.

11

Machine Learning Attack on a Fault Injected PUF
In the previous section, we assumed an ideal case where external factors were eliminated from the PUF
circuitry. The path delays are purely from the fabrication variations due. Realistically, we cannot
consider this case practical.

In practical use, the Arbiter PUF will change its behavior because of external factors such as temperature
and EMI/EMC interference. We can observe this by delving into the MUX gates and their temperature
properties.

All CMOS devices, like the MUX, will have different switching voltage thresholds. This may be due to
differing doping levels across the IC or inaccurate MOSFET dimensions. However, this is expected and
exploited in the Arbiter PUF design. Another factor exists that can severely impact the MOSFETS
performance. The kT/q term often appears in semiconductor devices because it impacts switching
thresholds, leakage currents, and the overall performance of the MSOFET. At lower temperature,
electrons can move faster (and vice versa). This effectively lowers the propagation delay of the CMOS
device. Simply put, a cold IC can run faster than a hot IC.

Changing environments of the same Arbiter PUF device can induce a different CRP. However, this is
expected in a practical PUF. We can see this in the application of a Strong PUF in bank ID cards. The bank
will issue many random challenges to the PUF. It will compare the response with the bank’s know CRP
pairs and verify the user. Even in this response, the bank will disregard a small number of incorrect CRPs
if most of the CRP are correct. Practically, the bank allows a small amount of response be incorrect and
even inserts some incorrect data in its known CRP data set to make the Strong PUF error tolerant
without the use of any external error correction [3].

Changes in the Additive Delay Model
With this in mind, we can modify our original additive delay model. We can assume that the external
factors affecting the propagation delays within the PUF model to be affected in a Gaussian model.
However, most of the CRPs will not be affected significantly enough to flip the response from low to
high or high to low. We can modify our model in the following manner.

 [4]

To test the fitness of a given PUF model, we can now compare the reliability of the CRP against the
predicted reliability as defined below.

12

 [4]

This simply means that the ML algorithm must also compute the e term, the error threshold.

Execution
In this project, this is practically done by modifying the parity vector used as the predictor in the
Classification Learner tool in MATLAB. In the previous section, the parity vector was n+1 wide, n being
the number of stages or challenges per response. We will provide the classification learner with n+2 bits,
where the n+2 bit is equal to 1. This will allow the ML algorithm to use another variable that will stand
for the error term. We can also increase the size of the parity vector to n+3, n+4, and n+5 size to give the
ML algorithm more terms to find the error value.

13

Results
The following the accuracy results from a parity vector of size n+2.

CRP No Classification Learner Accuracy Note Time

100 Fine Tree 78.0% Quick to Train Instant
100 Medium Tree 78.0% Quick to Train Instant
100 Coarse Tree 77.0% Quick to Train Instant
100 Fine KNN 84.0% Quick to Train Instant
100 Medium KNN 91.0% Quick to Train Instant
100 Coarse KNN 91.0% Quick to Train Instant
100 Cosine KNN 91.0% Quick to Train Instant
100 Cubic KNN 91.0% Quick to Train Instant
100 Weighted KNN 91.0% Quick to Train Instant
100 Linear SVM 88.0% Standard Instant
100 Linear SVM 91.0% Optimied 30x < 5 Minutes
500 Fine Tree 76.4% Quick to Train Instant
500 Medium Tree 80.0% Quick to Train Instant
500 Coarse Tree 85.4% Quick to Train Instant
500 Fine KNN 75.8% Quick to Train Instant
500 Medium KNN 85.4% Quick to Train Instant
500 Coarse KNN 85.4% Quick to Train Instant
500 Cosine KNN 85.4% Quick to Train Instant
500 Cubic KNN 85.4% Quick to Train Instant
500 Weighted KNN 85.2% Quick to Train Instant
500 Linear SVM 85.4% Standard Instant
500 Linear SVM 85.4% Optimied 30x < 5 Minutes

1000 Fine Tree 71.3% Quick to Train Instant
1000 Medium Tree 78.2% Quick to Train Instant
1000 Coarse Tree 81.6% Quick to Train Instant
1000 Fine KNN 72.8% Quick to Train Instant
1000 Medium KNN 81.4% Quick to Train Instant
1000 Coarse KNN 81.6% Quick to Train Instant
1000 Cosine KNN 81.1% Quick to Train Instant
1000 Cubic KNN 81.4% Quick to Train Instant
1000 Weighted KNN 80.3% Quick to Train Instant
1000 Linear SVM 81.6% Standard Instant
1000 Linear SVM 81.6% Optimied 30x < 5 Minutes
2000 Fine Tree 75.3% Quick to Train Instant
2000 Medium Tree 83.0% Quick to Train Instant
2000 Coarse Tree 83.0% Quick to Train Instant
2000 Fine KNN 72.9% Quick to Train Instant
2000 Medium KNN 82.7% Quick to Train Instant
2000 Coarse KNN 83.0% Quick to Train Instant
2000 Cosine KNN 82.7% Quick to Train Instant
2000 Cubic KNN 82.7% Quick to Train Instant
2000 Weighted KNN 82.2% Quick to Train Instant
2000 Linear SVM 83.0% Standard Instant
2000 Linear SVM 83.0% Optimied 30x < 5 Minutes
3000 Fine Tree 77.4% Quick to Train Instant
3000 Medium Tree 83.5% Quick to Train Instant
3000 Coarse Tree 83.5% Quick to Train Instant
3000 Fine KNN 73.3% Quick to Train Instant
3000 Medium KNN 83.4% Quick to Train Instant
3000 Coarse KNN 83.5% Quick to Train Instant
3000 Cosine KNN 83.3% Quick to Train Instant
3000 Cubic KNN 83.4% Quick to Train Instant
3000 Weighted KNN 82.2% Quick to Train Instant
3000 Linear SVM 83.5% Standard Instant
3000 Linear SVM 83.5% Optimied 30x < 5 Minutes

Part 2 parity is n+2

14

At 1000 CRPs used as training data out of 10000 available CRPs, or 10% of available CRPS, we can
achieve a testable 81.6% accuracy.

The following results use a n+3 parity vector.

CRP No Classification Learner Accuracy Note Time

100 Fine Tree 86.0% Quick to Train Instant
100 Medium Tree 86.0% Quick to Train Instant
100 Coarse Tree 86.0% Quick to Train Instant
100 Fine KNN 84.0% Quick to Train Instant
100 Medium KNN 91.0% Quick to Train Instant
100 Coarse KNN 91.0% Quick to Train Instant
100 Cosine KNN 91.0% Quick to Train Instant
100 Cubic KNN 91.0% Quick to Train Instant
100 Weighted KNN 90.0% Quick to Train Instant
100 Linear SVM 90.0% Standard Instant
100 Linear SVM 91.0% Optimied 30x < 5 Minutes
500 Fine Tree 76.2% Quick to Train Instant
500 Medium Tree 79.0% Quick to Train Instant
500 Coarse Tree 85.4% Quick to Train Instant
500 Fine KNN 76.4% Quick to Train Instant
500 Medium KNN 85.6% Quick to Train Instant
500 Coarse KNN 85.4% Quick to Train Instant
500 Cosine KNN 85.4% Quick to Train Instant
500 Cubic KNN 85.6% Quick to Train Instant
500 Weighted KNN 84.8% Quick to Train Instant
500 Linear SVM 85.4% Standard Instant
500 Linear SVM 85.4% Optimied 30x < 5 Minutes

1000 Fine Tree 70.6% Quick to Train Instant
1000 Medium Tree 79.0% Quick to Train Instant
1000 Coarse Tree 81.6% Quick to Train Instant
1000 Fine KNN 72.3% Quick to Train Instant
1000 Medium KNN 81.7% Quick to Train Instant
1000 Coarse KNN 81.6% Quick to Train Instant
1000 Cosine KNN 81.5% Quick to Train Instant
1000 Cubic KNN 81.7% Quick to Train Instant
1000 Weighted KNN 80.7% Quick to Train Instant
1000 Linear SVM 81.6% Standard Instant
1000 Linear SVM 81.6% Optimied 30x < 5 Minutes
2000 Fine Tree 75.4% Quick to Train Instant
2000 Medium Tree 82.8% Quick to Train Instant
2000 Coarse Tree 83.0% Quick to Train Instant
2000 Fine KNN 73.5% Quick to Train Instant
2000 Medium KNN 82.8% Quick to Train Instant
2000 Coarse KNN 83.0% Quick to Train Instant
2000 Cosine KNN 82.8% Quick to Train Instant
2000 Cubic KNN 82.8% Quick to Train Instant
2000 Weighted KNN 82.5% Quick to Train Instant
2000 Linear SVM 83.0% Standard Instant
2000 Linear SVM 83.0% Optimied 30x < 5 Minutes
3000 Fine Tree 78.0% Quick to Train Instant
3000 Medium Tree 83.5% Quick to Train Instant
3000 Coarse Tree 83.5% Quick to Train Instant
3000 Fine KNN 73.8% Quick to Train Instant
3000 Medium KNN 83.3% Quick to Train Instant
3000 Coarse KNN 83.5% Quick to Train Instant
3000 Cosine KNN 83.3% Quick to Train Instant
3000 Cubic KNN 83.3% Quick to Train Instant
3000 Weighted KNN 82.7% Quick to Train Instant
3000 Linear SVM 83.5% Standard Instant
3000 Linear SVM 83.5% Optimied 30x < 5 Minutes

Part 2 parity is n+3

15

The following are results from an n+4 and n+5 parity vector.

CRP No Classification Learner Accuracy Note Time

100 Fine Tree 91.0% Quick to Train Instant
100 Medium Tree 91.0% Quick to Train Instant
100 Coarse Tree 90.0% Quick to Train Instant
100 Fine KNN 87.0% Quick to Train Instant
100 Medium KNN 91.0% Quick to Train Instant
100 Coarse KNN 91.0% Quick to Train Instant
100 Cosine KNN 91.0% Quick to Train Instant
100 Cubic KNN 91.0% Quick to Train Instant
100 Weighted KNN 90.0% Quick to Train Instant
100 Linear SVM 91.0% Standard Instant
100 Linear SVM 91.0% Optimied 30x < 5 Minutes
500 Fine Tree 78.2% Quick to Train Instant
500 Medium Tree 81.4% Quick to Train Instant
500 Coarse Tree 85.4% Quick to Train Instant
500 Fine KNN 77.6% Quick to Train Instant
500 Medium KNN 85.4% Quick to Train Instant
500 Coarse KNN 85.4% Quick to Train Instant
500 Cosine KNN 85.4% Quick to Train Instant
500 Cubic KNN 85.4% Quick to Train Instant
500 Weighted KNN 85.0% Quick to Train Instant
500 Linear SVM 85.4% Standard Instant
500 Linear SVM 85.4% Optimied 30x < 5 Minutes

1000 Fine Tree 70.1% Quick to Train Instant
1000 Medium Tree 77.2% Quick to Train Instant
1000 Coarse Tree 81.6% Quick to Train Instant
1000 Fine KNN 71.6% Quick to Train Instant
1000 Medium KNN 81.5% Quick to Train Instant
1000 Coarse KNN 81.6% Quick to Train Instant
1000 Cosine KNN 81.4% Quick to Train Instant
1000 Cubic KNN 81.5% Quick to Train Instant
1000 Weighted KNN 80.3% Quick to Train Instant
1000 Linear SVM 81.6% Standard Instant
1000 Linear SVM 81.6% Optimied 30x < 5 Minutes
2000 Fine Tree 74.6% Quick to Train Instant
2000 Medium Tree 82.3% Quick to Train Instant
2000 Coarse Tree 83.0% Quick to Train Instant
2000 Fine KNN 73.0% Quick to Train Instant
2000 Medium KNN 82.8% Quick to Train Instant
2000 Coarse KNN 83.0% Quick to Train Instant
2000 Cosine KNN 82.5% Quick to Train Instant
2000 Cubic KNN 82.8% Quick to Train Instant
2000 Weighted KNN 82.2% Quick to Train Instant
2000 Linear SVM 83.0% Standard Instant
3000 Fine Tree 79.2% Quick to Train Instant
3000 Medium Tree 83.5% Quick to Train Instant
3000 Coarse Tree 83.5% Quick to Train Instant
3000 Fine KNN 73.4% Quick to Train Instant
3000 Medium KNN 83.3% Quick to Train Instant
3000 Coarse KNN 83.5% Quick to Train Instant
3000 Cosine KNN 83.3% Quick to Train Instant
3000 Cubic KNN 83.3% Quick to Train Instant
3000 Weighted KNN 82.8% Quick to Train Instant
3000 Linear SVM 83.5% Standard Instant

CRP No Classification Learner Accuracy Note Time

2000 Linear SVM 83.0%
3000 Linear SVM 83.5%

Part 2 parity is n+5

Part 2 parity is n+4

16

We can see from the tabulated results that increasing the size of the parity vector from n+2 to n+5 only
results in a minor increase the ML algorithm’s accuracy (±0.1%). We can see from these results that the
increase in size is not an effective way of more quickly attacking the error injected PUF.

We can also see that the ML algorithm has a maximum accuracy of ~83.5%. This is because of the
randomly noise injected model used to generate the given PUF data. This is to be expected and as stated
in the previous sections, in a practical and realistic application of the Arbiter PUF, we cannot expect
100% accuracy from the PUF itself when generating a CRP. If the noise injected Arbiter PUF (modeling a
realistic Arbiter PUF) cannot implement 100% accurate CRP production, the ML algorithm cannot
surpass this limitation.

Conclusion
In this project, we have implemented ML algorithms to attack a simulated PUF. The data set was
separated into two sections, and ideal case and a fault injected case. The ideal PUF data set was used as
a proof of concept. The Arbiter PUF, if a small number of CRPs can be obtained, is very vulnerable to a
ML attack.

We have also provided an example of a more realistic PUF application. However, just like the ideal case,
if a small number of CRPs can be obtained, it is still vulnerable to a ML attack. Especially given that in
realistic applications, it is expected that the PUF itself will not be accurate 100% of the time, we can
confidently say that the ML algorithm can effectively model the PUF even with an accuracy of 83.5%.

17

Bibliography

[1] C. Herder, M.-D. (. Yu, F. Koushanfar and S. Devadas, "Physical Unclonable Functions and
Applications: A Tutorial," Proceedings of the IEEE, vol. Vol. 102, no. No. 8, August 2014.

[2] D. Lim, "Extracting Secret Keys from Integrated Circuits," 2004.

[3] U. Ruhrmair and D. E. Holcomb, "PUFs at a Glance".

[4] G. T. Becker, "The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs," Ruhr
Universitat Bochum.

